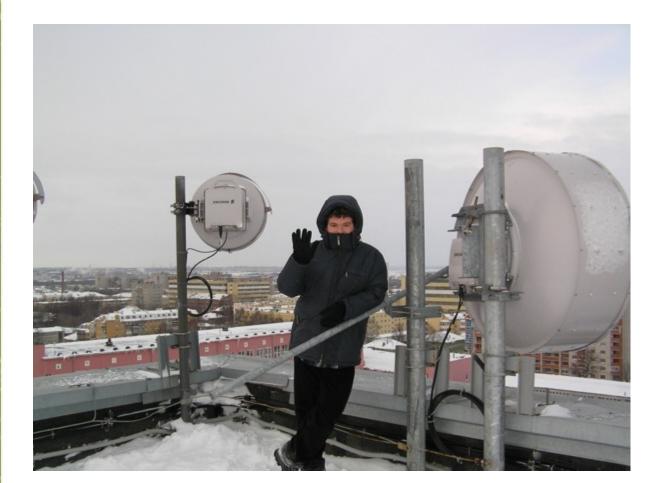


# JUNIPER DAY

16 октября 2018 | Москва

## **Metro Access Evolution**

Евгений Бугаков Senior Systems Engineer






### Evgeny Bugakov

### 6 years in Juniper 15+ years in telecom JNCIE-SP

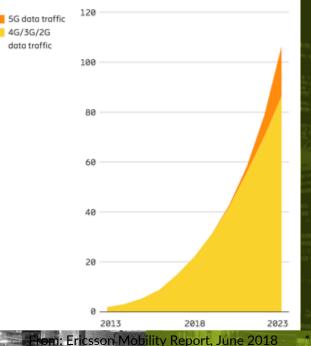
### SPEAKER INTRODUCTION







This statement of direction sets forth Juniper Networks' current intention and is subject to change at any time without notice. No purchases are contingent upon Juniper Networks delivering any feature or functionality depicted in this presentation.


This presentation contains proprietary roadmap information and should not be discussed or shared without a signed non-disclosure agreement (NDA).



## **5G EVOLUTION** Impact on the mobile backhaul network



Global mobile data traffic (exabytes per month)



## Metro/Access trends

Mobile is leading the way

### Mobile traffic is growing rapidly:

46% CAGR over 2016-2021 (6.7x), compared to 24% CAGR (2.9x) for global IP traffic\*.

## Increase in mobile traffic triggers mobile network capacity upgrades:

More wireless spectrum / additional frequency bands. More base stations, cell site densification with small cells. LTE-A deployments and carrier aggregation.

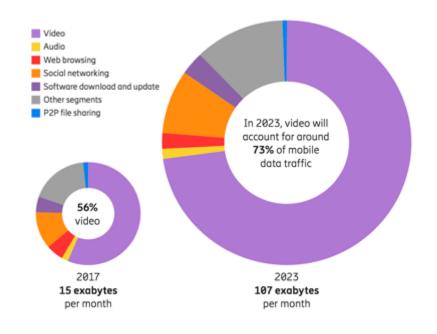
5G is much discussed, but still early days:
Initial 5G trials this year
5G starts to contribute in earnest to traffic volume by 2021+

\* Cisco VNI, 2016-2021, September 2017



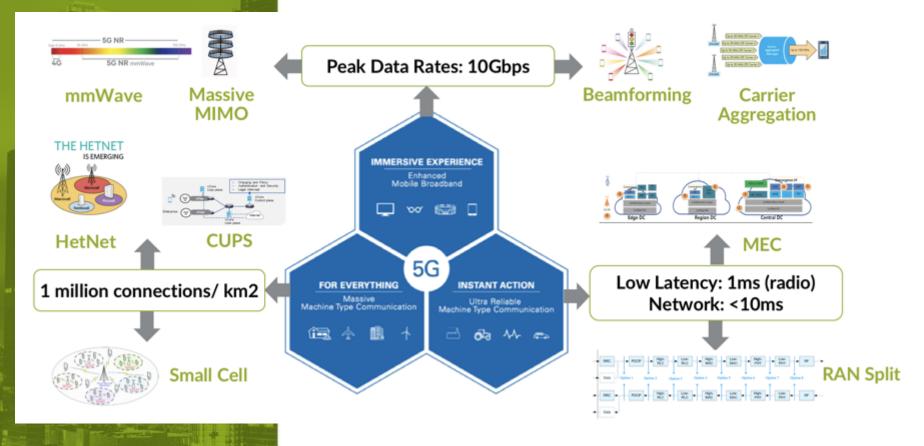
## **MOBILE DATA TRAFFIC**

What's driving the traffic growth?


#### We're getting addicting to the small screen....

#### watching ever more (and higher definition) video

#### Daily hours spend with digital media per adult user




#### Mobile data traffic by application





### **5G TECHNOLOGY DRIVERS**





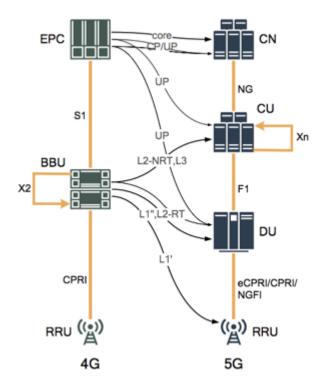
## **5G STANDARTIZATION PROCESS**

#### RELEASE 15 – 5G first phase (commercial trials)

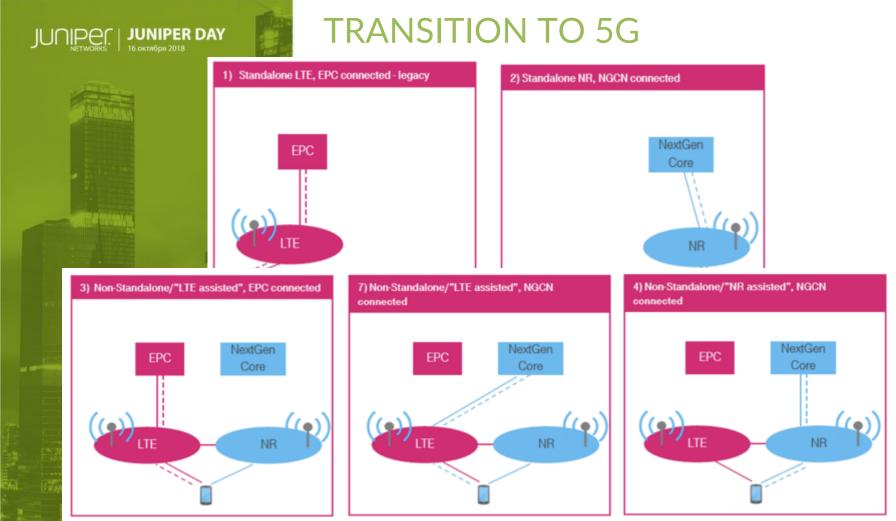
5G non-standalone (Dec 2017) and 5G standalone definitions (Jun 2018)

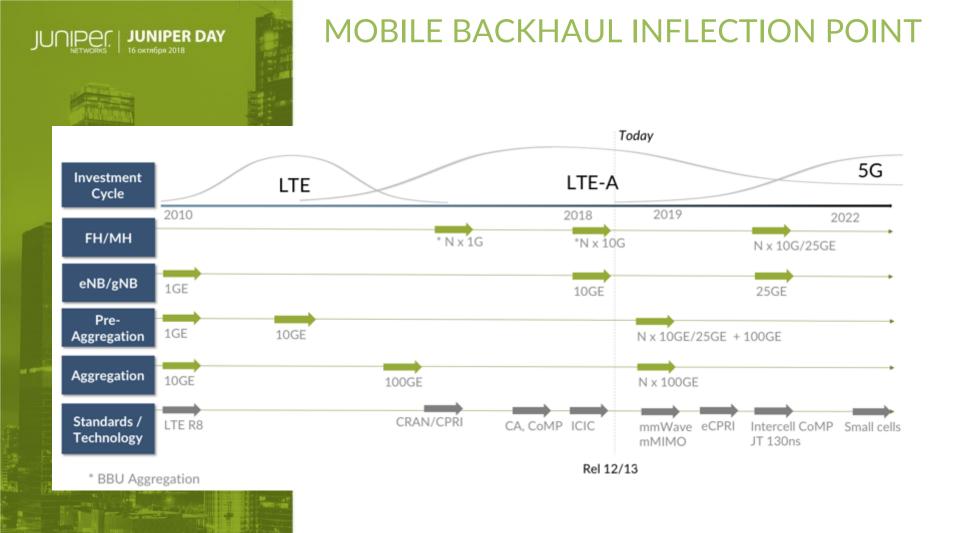
Mainly focused on enhanced Mobile Broadband (eMBB) and fixed wireless

May perform on lower speed (on sub-6GHz bands) comparable to LTE Advanced Pro (LAA – Licensed Assisted Access, Rel 13) -> Gigabit Class LTE on 20MHZ of licensed spectrum + 5Ghz unlicensed part


**RELEASE 16** – 5G second phase (further evolution)

To be completed by the end of 2019

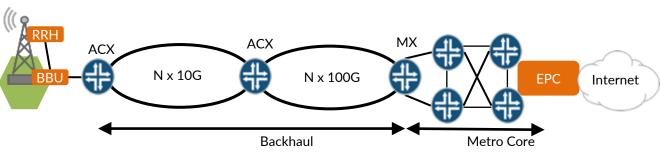

Focus on Ultra-Reliable Low-Latency Communications (URLLC, 1ms latency -> SD cars) and Massive Machine Type Communications (MMTC, 1m devices per km2 -> Industrial IOT)




### **TRANSITION TO 5G**

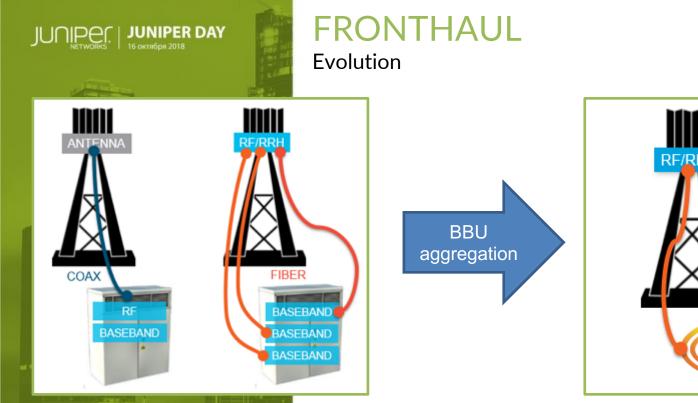


Evolving from single-node in 4G to split function architecture in 5G

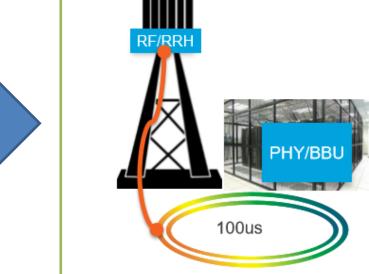








### CSR architecture today 4G / LTE-A

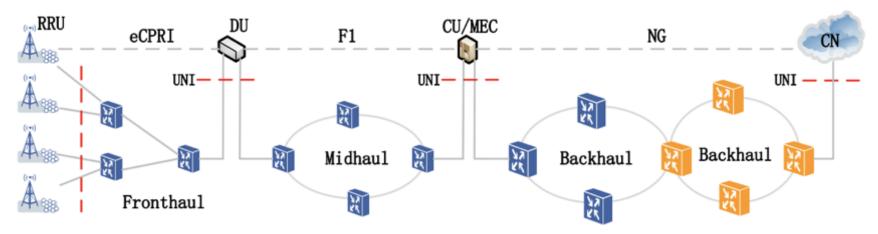
#### Massive MIMO Carrier Aggregation




Most deployed CSR architecture for 4G / LTE-A today:

- Operators start to implement Massive MIMO and Carrier Aggregation for better spectrum efficiency to improve density and bandwidth. This requires CSR upgrades at Cell Sites from 1GE to 10GE.
  - **10GE CSR** typically deployed at single site or to aggregate multiple cell sites, depending on reach between sites.
- Requires hardened CSR with **3** ... **8** x **10GE ports** (downlink & uplink).



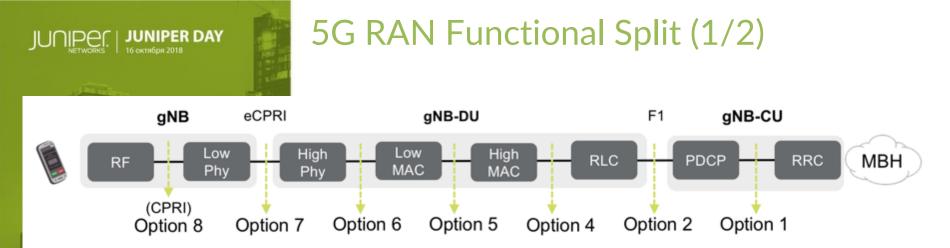

- 4G introduced CPRI
- Reduce TCO and improved performance



- 100 us latency budget allows for BBU aggregation & centralization.
- Potential benefits from scale & efficiency, but needs low latency & high accuracy timing.



## NG Mobile Backhaul




#### **Table 7-3 Network reach requirements**

| Fronthaul | 1~20km              |  |
|-----------|---------------------|--|
| Midhaul   | 20~40km             |  |
| Backhaul  | 1~10km              |  |
|           | Aggregation: 5-80km |  |
|           | Core: 20~300km      |  |

#### L2 fronthaul evolution with eCPRI

- Maximum 100 us (microsecond) latency and 65 ns delay variation
- Ethernet Switch with RoE and TSN: typically 6 x 10/25GE + 2 x 100GE



### Current CPRI based approach cannot meet 5G bandwidth demands.

- Split Option 8 (CPRI link per Antenna) will require 10x of capacity in FH for 5G Radio (100MHz, 8x8, 256QAM)
- Evolution to 64 x 64 Massive MIMO will be nearly impossible based on CPRI (Split 8).

### 5G recommends Functional split architecture in RAN:

- Achieve bandwidth optimization with introducing Ethernet/IP and hierarchical design in RAN.
- Ability to introduce virtualization (for increased scale and flexibility) and node slicing (for end-to-end service models) in RAN.



## 5G RAN Functional Split (2/2)

### 5G RAN considers different architectures with split options 1 through 7:

- Split at higher the layer requires less bandwidth, but with high latency.
  - Sufficient for services like Fixed Wireless Access to provide High Speed Internet.
- Split at lower the layer requires higher bandwidth, but provides low latency for
  - better RF gain for supporting technologies such as CoMP and Carrier Aggregation.

## Split Options 2 and 7 are most often considered model for meeting bandwidth and latency design in 5G FH:

- Option 7: To meet RF Gain (Ex: Carrier Aggregation, CoMP) and bandwidth reduction compared to CPRI.
- Option 2: To meet bandwidth reduction with PDCP aggregation and approach to vRAN.





### 5G RAN Functional Split (2/2)

#### Impact of X2 delay on user throughput Non coherent joint transmission CoMP scheme

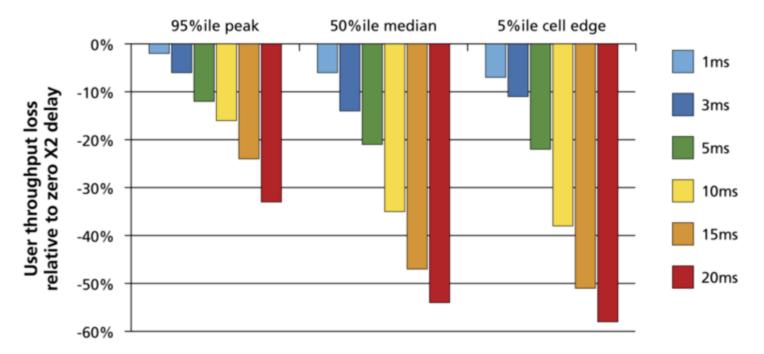
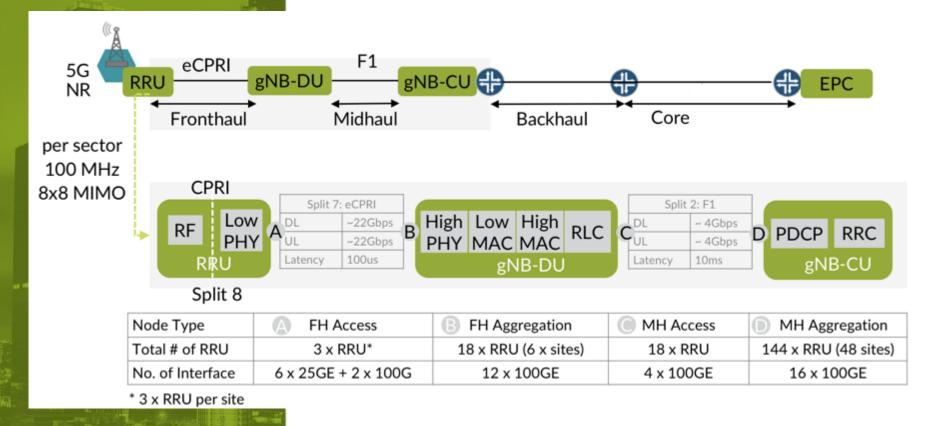




Figure 4 Impact of X2 delay on user throughput with CoMP scheme. 3km/h users assumed. Source Qualcomm [11]



### **5G FRONTHAUL & BACKHAUL**





### ACX PORTFOLIO OVERVIEW

| ACX500                 | ACX1K/4K                                | ACX5008                      | ACX5424                           | MX204<br>ACX5448                                                                        | MX10K3<br>ACX5800            |
|------------------------|-----------------------------------------|------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------|------------------------------|
| Small Cell NID         | 2G/3G/LTE CSR                           | LTE-A CSR                    | 5G CSR, E-RAN,<br>Pre-Aggregation | Aggregation                                                                             | Aggregation                  |
| 2*10GE +<br>4*GE/2.5GE | 2*10GE + 4*GE<br>RJ45 + 4*GE /<br>2.5GE | 8*10GE + 8*GE<br>+ 4*GE RJ45 | 24*10GE +<br>4*100GE / 8*25GE     | 48*10GE + 4*100GE<br>44*10GE + 6*100GE<br>w/macsec<br>36*10GE + 2*100GE<br>+ 2*200G DCO | Up to 12*100GE<br>+ 144*10GE |
| Wall/Pole mount        | 1RU, ½ 19 Inch<br>Fanless               | 1RU, 19 Inch,<br>250mm       | 1 RU, 19 Inch,<br>320 mm          | 1 RU, 19 Inch<br>600mm                                                                  | 5RU, 19 Inch<br>455 mm       |
| IP65                   | -40C to 65C                             | -40C to 65C                  | -40C to 65C                       | 0 to 50C                                                                                | 5°C to 55°C                  |



## ACX PORTFOLIO EVOLUTION

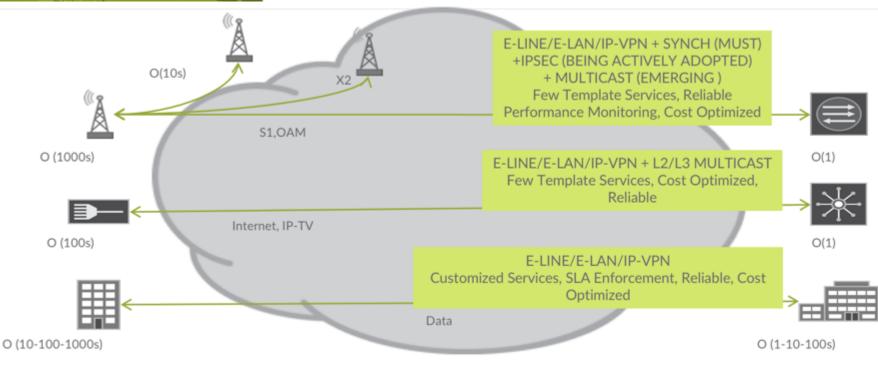











| TUMI 1                   | TUMI 2                    | Manhattan 1                       | Manhattan 2    | R6273                             |
|--------------------------|---------------------------|-----------------------------------|----------------|-----------------------------------|
| 5G FH, MH, Small Cell    | 5G FH, MH                 | 5G Anyhaul & E-RAN<br>Aggregation | 5G Aggregation | 5G Anyhaul & E-RAN<br>Aggregation |
| 12*10/25GE + 2<br>*100GE | 12*10/25GE + 4<br>*100GE  | 48*10/25GE +<br>12*100GE          | 36*100GE       | Up to 14*100GE and 56*10/25GE     |
| Wall/Pole mount          | 1 RU, 19 Inch, <<br>300mm | 2RU, ½ 19 Inch                    | 1RU            | 3 RU, 19 Inch,<br>250 mm          |
| IP65                     | -40C to 65C               | 0C to 50C                         | 0C to 50C      | -40C to 65C                       |





## Metro Ethernet

An universal Access Network Infrastructure





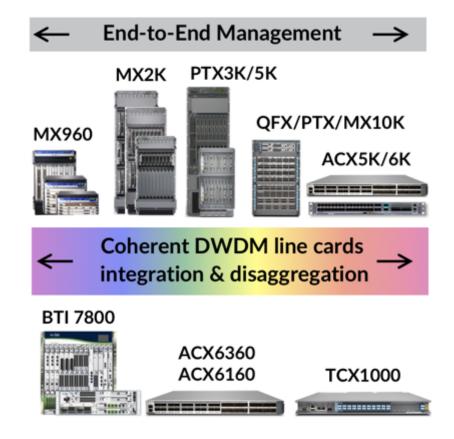
## IP-OPTICAL CONVERGENCE In the Metro-Access



## JUNIPER'S PACKET-OPTICAL STRATEGY

Towards truly integrated end-to-end architectures

Convergence between transport and IP network layers is finally happening:


Focus on Metro/DCI optical transport.

#### Industry moving towards open optical ecosystem:

- Driven by focus on network disaggregation and interoperable solutions.
- Transceivers are de-coupled from line system.

### Juniper's differentiators:

- Junos RPD routing stack: integration from L0 to L3 (not only L0 to L2).
- Multi-layer management & control.

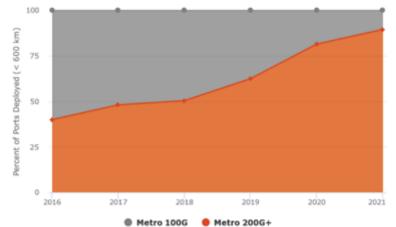




## Coherent DWDM pluggables

The next frontier

## 100G/200G DWDM deployment in metro (<600 km) is now widespread:


- 100GE services, but often 200G wavelengths to reduce cost per bit.
- 200G wavelengths have approx. half the cost per bit compared to 100G – but at strongly reduced maximum reach.
- 400G wavelengths will start to become relevant in 2019, but generally still using 100GE QSFP28 clients.

## 100G+ for metro-access (< 80 km) is now starting to become relevant:

- This drives the need for very cost effective, short reach DWDM solutions → DWDM pluggables.
- Market will develop over the next 2 -3 years.



Metro Coherent Market Share by Speed



Cignal Al, 2H16 Optical Application Report, May 2017

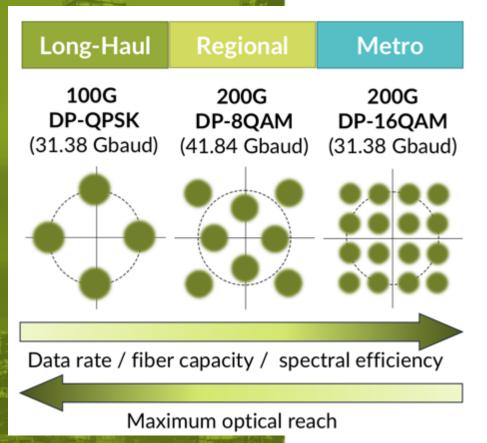


### **100G DWDM pluggables today** 100G/200G CFP2-DCO

#### 100G QSPF28 clients support only up to 40 km:

- 100G ER4-Lite allows for 18 dB loss budget with FEC.
- 80 km reach requires at least 23 dB loss budget, which is not feasible with 25G NRZ signaling and direct-detection.
- Coherent DWDM transceivers can easily meet this, but are still too high power consumption to fit into QSFP28 form factor.

## CFP2 allows for full coherent detection and digital signal processing in a pluggable form factor:


- Power consumption <19W feasible in CFP2 form factor.</li>
- Fully tunable across the C-band with up to 96 x 100G/200G per fiber (and even 128 x 100G/200G with 37.5 GHz flex-grid).
- Unamplified dark fiber links up to 140 km (33 dB loss budget).
- Amplified DWDM transport links up to 2500 km.



https://acacia-inc.com/product/cfp2-dco/



### **100G DWDM pluggables today** 100G/200G CFP2-DCO





| Maximum reach     | Up to 1000 km (@200G)   |
|-------------------|-------------------------|
| Modulation        | 1 λ x 100G/200G         |
| Wavelength grid   | 37.5/50/100 GHz         |
| Power consumption | < 19 W                  |
| Tx power / lane   | -10 to +1 dBm (tunable) |
| Rx power / lane   | -26 to +3 dBm (@200G)   |
| OSNR requirement  | 19.5 dB (@200G)         |
| CD tolerance      | +/- 26,000 ps/nm        |



### OPTICAL INTERFACED BEYOND 40 KM TODAY 100G/200G pluggable DWDM interfaces for ZR and short-reach DCI



#### 100G/200G CFP2-DCO





### ACX6360 with 20 x QSF28 and 8 x CFP2-DCO slots

### 100G / 200G coherent DWDM CFP2-DCO

- Pluggable coherent DWDM interfaces, used for both ZR and DWDM applications
- Fully tunable across the C-band (up to 96 x 100G)
- Up to 2500 km transmission over DWDM line systems
- Up to 140 km transmission over dark fiber





### 1RU compact packet-optical transport platform:

- 3.6 Tbps non-blocking PFE with 2.0B packet/s and 100 us buffer for micro bursts
- Pluggable client interfaces: 20 x 100G QSFP28
- Pluggable line interfaces: 8 x 100G/200G CFP2-DCO (DP-QPSK/DP-8QAM/DP-16QAM)
- MACsec with AES256 encryption supported on client and line-side for secure transport
- 685 mm deep, < 756.5 W power consumption</li>



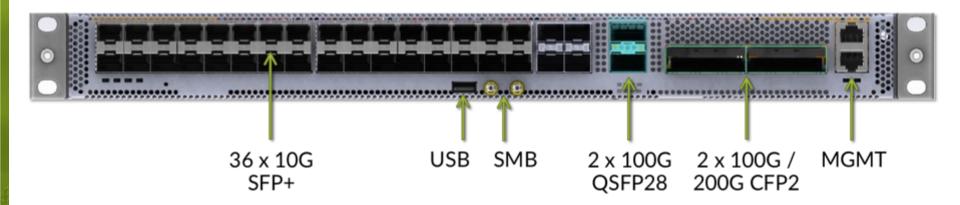
**QSFP28** client-side ports

### **CFP2-DCO** line-side ports



### ACX6360

### Software features & scaling


| Features                                                       |                                                             | Scale                                  |              |
|----------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|--------------|
| Features @ FRS                                                 | Features Post-FRS (t.b.c.)                                  |                                        | Scale @ FRS  |
| Protocols                                                      | L2 COS                                                      | Ports per AE                           | 64           |
| BGP, ISIS, MPLS, RSVP, LDP                                     |                                                             | AE interfaces per system               | 128          |
| ZTP                                                            | LLDP                                                        |                                        |              |
| Port Mirroring                                                 | MC-LAG                                                      | ECMP paths per system                  | 32           |
| 256AES MACsec                                                  | Multicast – PIM-SM/SSM                                      | IFLs per PFE/system                    | 60K          |
| JTI Optical/OTN sensors                                        | IGMP, MSDP, PIM                                             | VoQs                                   | 384K         |
| LDP Synchronization                                            | sFlow                                                       | IPv4 / IPv6 FIB capacity               | 480K         |
| BGP-LS                                                         | FBF                                                         | RIB capacity                           | 5M           |
| LAG / LACP                                                     | GRE                                                         | Filters MPLS label stack               | No Limit     |
| FRR (link and node)                                            | 6PE                                                         | Max imposed / pop / swap               | 8            |
| Virtual router (VRF-lite)                                      | P2MP                                                        | labels                                 |              |
| Filters – Port ACLs (ingress),<br>Routed ACLs (ingress/egress) | Filters – Port ACLs (egress),<br>VLAN ACLs (ingress/egress) | Max ingress / transit /<br>egress LSPs | 48K/128K/48K |
| L3 QOS – classification (DSCP only), rewrite, queuing          |                                                             |                                        |              |



ACX5448-D 100G/200G DWDM uplinks

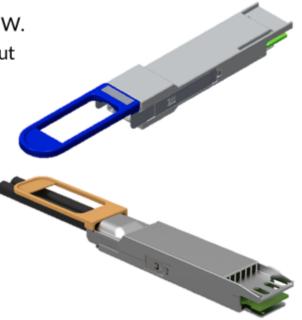
IP-optical integration in the metro-access:

- Same hardware platform (PFE, RE, etc...) as ACX5448.
- 36 x 1GE/10GE, 2 x 100G QSFP28 and 2 x 100G/200G CFP2-DCO
- Software switchable between QSFP28, CFP2 ports & TCAM (for high/medium FIB scale)



Integrated 100G/200G coherent DWDM CFP2-DCO interfaces enable IP-Optical integration in the metro-access domain




### COHERENT DWDM PLUGGABLES TOMORROW for the QSFP ecosystem

### QSFP28 is today the universal form factor of choice :

- QSFP28 ports are generally designed for a power consumption < 4~5 W.</li>
- Coherent technology scales down in footprint and power over time, but it will still take many years to meet this target.

### QSFP-DD is the next-generation universal form factor:

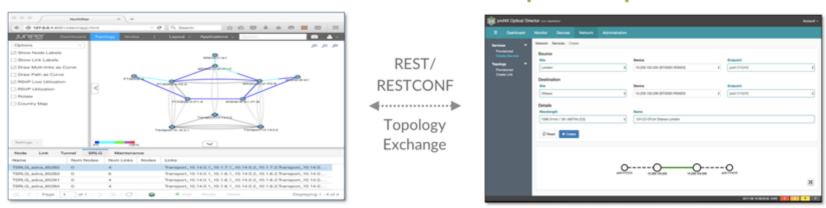
- Designed to support 200G / 400G pluggable optics, which have much higher power consumption (< 12~14W).</li>
- Innovation in coherent DWDM technology is now focused on 400G DWDM small form factor pluggables → 400G DCI market.
- The same pluggables will also support 300G / 200G / 100G modes to address access, metro and regional markets.



Differentiation between client and line interfaces will largely disappear once the form factors become identical and you can mix-and-match on the same line card



## **METRO OPTIMIZATION** and automation with NorthStar

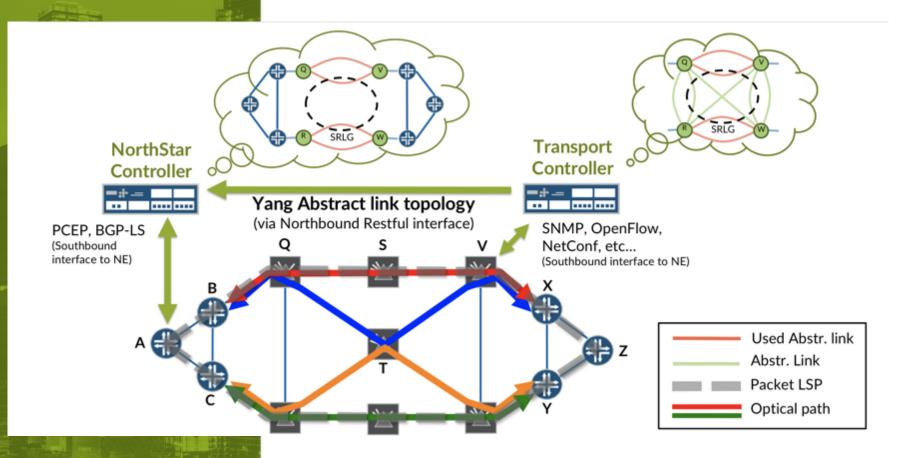



## Multilayer optimization

### ProNX Optical Director & NorthStar

proNX Optical Director

### NorthStar Controller




- Technology-agnostic YANG data model based on draft-ietf-teas-yang-te-topo-05.
- Dynamic learning of abstracted node & link topology through REST/RESTCONF interface
- TE metric, SRLG, protection, and delay attribute exchange with dynamic LSP re-optimization to ensure LSP constraints are met.
- Proven end-to-end Juniper solution, as well as with 3<sup>rd</sup> party transport controllers.



### NORTHSTAR MULTI-LAYER OPTIMIZATION

Controller-to-controller coordination between transport and IP/MPLS layers



## Q&A session

## THANK YOU FOR YOUR TIME

Evgeny Bugakov ebugakov@juniper.net