

# JUNIPER DAY

## 16 октября 2018 | Москва

Constant and the second second

The second secon



# Quo vadis communicare ?

Уве Рихтер uwe@juniper.net

## Automation: It's changing life around us







## Automation: Getting it right

#### **Google Machine Learning Word Accuracy**



#### Source: Kleiner Perkins Internet Trends 2018



## Automation: Setting the context

WHAT?

WHY?

"Using machines to run machines"

Peter F Drucker 1955 Agility! Delivering outcomes fast. Dealing with scale. Reacting to change. HOW?

Technology, Culture, and Process



## An Example: The Self-Driving Car More Than Just Point A to Point B



Is it a Car... Is it a Computer?

#### THE PROMISE

Ownership:Own vs. UseSafety:Human errors cause 94% of car crashesPlanning:No traffic lights? Better road capacity?Logistics:Self-driving delivery vehicles

#### THE IMPACT

Don't need drivers:Need programmersDon't need cops:Cars can (will) self-policeDon't need witnesses:Cars are more objectiveWhat about insurance?Who pays for glitches?





## Disruption

## Evolution





## The Self-Driving Network: What It Does

#### A self-driving network will:

- Accept "guidance" from a network operator
- Self-discover its constituent parts
- Self-configure
- Automatically connect nodes
- Self-monitor using probes and other techniques

- Automatically monitor and update services and SLAs
- Auto-detect and auto-enable new customers or users
  - Self-analyze using machine learning
- Self-report to humans



## Schematic of a Self-Driving Network





## So what ? Numbers from "our" world...

- By 2020, 90% of the world's population over six years old will have a mobile phone
- By 2020, 26 billion devices will be connected to the internet
- A self driving car generates 1 GB of data per second (that's 2 Petabyte per car per year – to do the math ;-
- By 2020, more than 25% of identified enterprise attacks will involve IoT



## Why Do We Need The Self-Driving Network?



Reduce net management complexity and costs

Satisfy increasingly demanding customers "Push out" the Performance / Agility tradeoff curves

0101010010101010101011101101101 0101101010010101111001101110101 010110101 J10101 001101110101 0101010 01010101 0101101 00101011 01010100 0101010 11011011101 .01110101 010101001010101010101 011101 010110101001010111001 1110101

Security

Baseline of normal activity

**Detect anomalies** 

Automatically

## Your Journey to a Self-Driving Network<sup>TM</sup>

#### **The Self-Driving Network**

Human-Driven Automation



- Standard-based network interfaces and data models
- Automate network provisioning and management
- Simplify network operations

Event-driven Automation



- Telemetry for Actionable Information
- Integration with Full IT infrastructure (Orchestration, etc)
- Rule-based Actions
  driven by events

#### Machine-Driven Automation



- Use sophisticated algorithms (statistics)
- Pre-programed machines makes decisions and drives network change
- Humans make decisions where machines cannot

#### Autonomy



- Integrated machinelearning algorithms into the system
- Adaptive machine decisions drive network change
- Human supervision, no active intervention

JUNIPEI



## The Three Pillars of Success



JUNIPer

## The Three Pillars of Success

## CULTURE

- Lead the change from CLI to software mentality
- Create crossfunctional teams
- Encourage and reward skills development
- Fail fast, fix fast, scale fast

### PROCESS

- Build an Agile-DevOps environment
- Train up staff
- Follow the processes
- Don't allow exceptions
- Leverage, engage and contribute to the community

## TECHNOLOGY

- Identify focus areas
- Start small, iterate often
- Leverage tools across the infrastructure
- Embrace & encourage open-source
- Five key technologies



## FIVE TECHNOLOGIES FOR SELF DRIVING





2 TELEMETRY

3

5

MULTIDIMENSIONAL VIEWS

DECLARATIVE INTENT

**DECISION MAKING** 





#### NOW

- Discovering topology
- Computing paths, bandwidth, fast reroute
- Updating software
- Auto VLANs and firewalls as VMs are spun up, torn down
- Fault detection, trouble ticketing
- Root cause analysis

## SOON

- Smart auto-bandwidth
- Automatic service placement, service motion
- Specific upgrades based on configured services
- Inductive network action via machine learning





## The usual: speedometer, gas gauge, tire pressure sensors More recent: radar, lidar, sonar (for parking assist), cameras







#### NOW

- SNMP info + traps
  - Interface stats, flaps
- Routing info
- Netflow/sflow/jflow/...
- DPI, IDS
- Some streaming telemetry
- Some correlation across silos

## SOON

- Real-time deep telemetry: device state, customer state, packet state
- Much more info gathered, processed on-box, streamed in real time
- Active telemetry: zoom in as needed, zoom out again
- Correlated telemetry across time, geography, network layers





#### **MULTIDIMENSIONAL, MULTI-MODAL VIEWS**

#### NOW

- Neighbors, links
- Exit points, peers
- Layer 0-1 devices
- Global topology, traffic, flows
- Server and application performance
- Hackers, flash crowds, DDoS

#### SOON

- Correlation of information across geographies, layers, peers, clouds
- Root cause analysis via supervised learning
- Time-based trending to
  establish and adapt baselines
- Optimal local decisions based on global state



## **DECLARATIVE STATEMENT OF INTENT - CARS**

## SAY WHERE YOU WANT TO GO...

- Hints:
  - Fastest time
  - Least distance
  - Most scenic
  - Most efficient use of battery



## Even better: the car can simply talk to your phone, figure out where you need to be, and take you there





## **DECLARATIVE STATEMENT OF INTENT** - NETWORKS

#### NOW

- Give path constraints: bandwidth, diversity, # LSPs (Northstar)
- Say which "virtual network" (VN) a VM belongs to, and inter-VN policies (Contrail)

#### SOON

- Say what you want the network to do
  - Economic hints: valued customers, priority applications, peering costs
  - Objective functions describing the end results you want





### **DECISION MAKING** - RULE-BASED VS. MACHINE LEARNING

#### **RULE-BASED LEARNING**

- If X happens, do Y: "If this then that"
- + Straightforward programming
- + Easy to predict and refine
- Slow, painstaking work
- At scale, hard to manage

#### **MACHINE LEARNING**

- "Essence of artificial intelligence" - Alan Turing
- + Can become "creative"
- + Fastest way to learn complex behavior
- Can come to strange conclusions
- Hard to know what it knows

## The Self-Driving Network will combine both



## You can start today

#### **The Self-Driving Network**

Human-Driven Automation



Data models – NetConf, Yang

Config templates network and security

Puppet, Ansible, Chef, OpenConfig JSNAPy/PyEZ Event-driven Automation



Juniper Event-Driven Infrastructure (JEDI) Contrail Svc Orchestration Network Director Security Director Juniper Extension Toolkit Juniper Telemetry I/F NITA Service Now Service Insight SaltStack Python Machine-Driven Automation



Software Defined Secure Networks

AppFormix

Contrail

NorthStar

#### Autonomy



Certain features eg. Auto-Bandwidth



## A vision worth pursuing: Self-Driving Networks!

A compelling vision, both meaningful and realizable

Economic imperative: attack the biggest cost in networking – operations

Efficiency imperative: spin up resources as needed and optimize their use

Agility imperative: bring up new services quickly; predict, anticipate and adapt

Security imperative: quickly detect, diagnose, isolate, and mitigate threats







## БОЛЬШОЕ СПАСИБО!