5G-READY TRANSPORT NETWORKS

.....

....

Summit

......

Evgeny Bugakov - Senior Systems Engineer

This product roadmap sets forth Juniper Networks' current intention and is subject to change at any time without notice. No purchases are contingent upon Juniper Networks delivering any feature or functionality depicted on this roadmap

WHAT IS 5G?

5G TECHNOLOGY DRIVERS

5G IS HERE!

First 5G networks now live across Americas, EMEA and APAC:

- Still early days, mass nationwide roll-outs will still take several years.
- Mainly Mid bands in EMEA and APAC, High bands in Americas
- Worldwide 45%~65% coverage expected by 2024.

27 publicly announced 5G contracts

https://www.ericsson.com/en/5g, October 22nd, 2019

BUT WAIT A SECOND...

Enhanced mobile broadband and fixed wireless access are the primary use cases applied by operators so far

5G STANDARTIZATION PROCESS

RELEASE 15 – 5G first phase (commercial deployments)

5G non-standalone (Dec 2017) and 5G standalone definitions (Jun 2018)

Mainly focused on enhanced Mobile Broadband (eMBB) and fixed wireless

May perform on lower speed (on sub-6GHz bands) comparable to LTE Advanced Pro (LAA – Licensed Assisted Access, Rel 13) -> Gigabit Class LTE on 20MHZ of licensed spectrum + 5Ghz unlicensed part

RELEASE 16 – 5G second phase (further evolution)

To be completed by the end of 2019

Focus on Ultra-Reliable Low-Latency Communications (URLLC, 1ms latency -> SD cars) and Massive Machine Type Communications (MMTC, 1m devices per km2 -> Industrial IOT)

TRANSITION TO 5G

TRANSITION TO 5G

MOBILE TRENDS AND INVESTMENTS

- LTE will continue to Grow.
- 5G will be a journey. Current focus on 5G is with NSA and looking for Enterprise Services and Industrial IOT.
- Operators focuses on Mobile Transport upgrades in Backhaul and architecture refresh to take the wave of 5G in future.
- Operators are evaluating Fronthaul solutions that is defined by 3GPP to take advantage of network reach, capacity and cost.
- Initial trails and rollout on 5G SA focused beyond 2020.
- We see new Vertical targeted services such as V2x, Massive IOT, Health Care beyond 2021.

Source: IHS Markit, ACG

MOBILE BACKHAUL EVOLUTION

TODAY'S METRO NETWORK

METRO-E AND LTE MOBILE TRANSPORT - TODAY

RADIO DRIVES TRANSPORT

BASE STATIONS EVOLUTION

Evolving from single-node in 4G to split function architecture in 5G

5G RAN DESIGN OPTIONS/REQUIREMENTS

© 2019 Juniper Networks

CRAN DEPLOYMENT OPTIONS

FRONTHAUL SOLUTIONS

© 2019 Juniper Networks

LTE-A/5G NSA MOBILE TRANSPORT - TODAY

JUNIPER SOLUTIONS IN 5G

Coverage

✓Transport

- Metro Fabric
- Fronthaul
- •FMC/FWA
- Highly Scalable Edge/Core

✓ Virtualization

Edge Cloud/Telco Cloud/MultiCloudSDWAN

✓ Security

- Mobile/IOT Security
- Edge Cloud Security
- Internet/Roaming Security.
- DDoS Protection (JNPR+Corero)

Capability

- ✓ Service Differentiation
 - Network Slicing

✓ Timing Synchronization

- Tight TAE budget
- Strict High Availability

✓ Automation

- ZTD
- Telemetry/Netconf/YANG
- Healthbot
- Network Management

Capacity

✓ Platform (Transport)

- Temperature Hardened High Capacity (300G+) access and Xhaul Aggregation (2.4T+) solution.
- Interface type support for 25GE, 100GE in Access.
- Support for 400GE uplinks.
- Low Latency switching for Fronthaul.
- Highly Scaling Timing support.
- Scalable Backhaul Architecture,
- Highly Scalable Edge features.
- Scale-up/Scale-out Core
- ✓ Data Center
- ToR/EoR Metro Aggregation.
- Scale-up/Scale-out DC Fabric.
- ✓ Security
 - Service Provider Managed Service Enterprise Security Solution at scale.

FLEXIBILITY FOR SP INFRASTRUCTURE TRANSFORMATION

Juniper: Leadership Without Technology Religion

Flexible Silicon Options

Flexible Junos Options

CONVERGED METRO ETHERENT PORTFOLIO

2018H2

2019H2

2020H2

TIMING & SYNC

SYNCHRONIZATION & TIMING BECOMES CRITICAL

5G TDD demands Strict Timing

- +/- 1.5us
- Strict Hold-over timing (In Hours)

Stringent Timing in New architectures

- Fronthaul +/- 130ns (Required for CA, CoMP,etc.,) Following specifications are critical for 5G Timing
 - Class B or C Devices
 - PTP and SyncE Support
 - G.8275.1 and G.8275.2 Telecom Profile

OPTION 1: FTS & DISTRIBUTED GRANDMASTERS PTP Telecom profile: G.8275.1

OPTION 2: FTS & CENTRALIZED GRANDMASTERS PTP Telecom profile: G.8275.1

OPTION 3: ASSISTED PARTIAL TIMING SUPPORT PTP Telecom profile: G.8275.2

- G.8275.2 A-PTS in the backhaul nodes to provide for GNSS redundancy and hold-over
- Part of the network can be PTP unaware, e.g. for leased lines or brownfield deployments with older platforms

PTP provides better holdover incase of GNSS failure, but is generally not used as the primary reference clock

Centralized Grandmaste

OPTION 4: PARTIAL TIMING SUPPORT (PTS) PTP Telecom profile: G.8275.2

Equipment

without PTP

support

L3 Unicast (G.8275.2)

- No GNSS in the access domain
- G.8275.2 PTS in the backhaul nodes

ገሰበ

- Part of the network can be PTP unaware, e.g. for leased lines or brownfield deployments
- Only very few hops possible with acceptable sync performance

山

Network nodes should have QoS configured and ensure low network load to avoid further PTP accuracy reduction due to buffering

PRTC

Distributed Grandmaster in the access domain, only a few hops are possible

山

CONCLUSIONS

Different architecture choices for timing & synchronization

There's not a single "right" way to do sync, depends on customer preferences and installed base

Options	Pros & Cons
GNSS deployed at every cell site	 High cost & complexity, but best accuracy and stability.
	 GNSS might not always be available (e.g. jamming / spoofing)?
PTP Full Timing Support	 Low cost & complexity as only few Grandmasters are requited
	 G.8275.1 support required in every node
Assisted Partial Time Support	 Same cost and complexity as GNNS at every cell site
	 Can be appropriate solution for GNSS failure / unavailability
Pure Partial Time Support	 Lowest cost, very little requirements on the network
	 Major challenges with accuracy and stability, only possible for a small number of hops – if at all

Juniper "5G sync" recommendation is (1) Hybrid PTP + Sync-E, (2) G.8275.1 Telecom profile with T-BC in all nodes, and (3) PHY/MAC timestamping on all interfaces

THE JUNIPER ADVANTAGE

THE JUNIPER ADVANTAGE

AUTOMATION

AUTOMATION IN JUNOS BASED NETWORK JUNIPER OPEN SOLUTION

ZTD IN A&A INFRASTRUCTURE

ZTD USE CASE WITH MPLS IN THE ACCESS

Decoupling MPLS Data from ZTD Management (OAM) Plane

ZTD Management Plane is required to provide L2 connectivity between any newly connected node and AGN. There two options:

- ✓ Use a dedicated VLAN shared across access ring (IEEE802.3 bridging)
- Enable Layer 2 service on top of the provisioned MPLS infrastructure

Zero Touch Deployment in Access and Aggregation Design and Implementation Guide

QUESTIONS

THANK YOU

Engineering

State of the second